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Microscopic nonuniversality versus macroscopic universality in algorithms for critical dynamics
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We study relaxation processes in spin systems near criticality after a quench from a high-temperature initial
state. Special attention is paid to the stage where universal behavior, with increasing order parameter
m(t)~t?, emerges from an early nonuniversal period. We compare various algorithms, lattice types, and
updating schemes and find in each case the same universal behawviacrascopidimes, despite surprising
differences during the early nonuniversal stag&€4.063-651X97)14103-4

PACS numbes): 64.60.Ht, 02.70.Lq, 05.58.q

[. INTRODUCTION A simple physical argument for the growth of the magne-
tization in Eq.(1) was given by Janssd3,21]. Consider a
Temperature quenches in spin systems and the ensuigystem that is quenched to some final temperalyrénot
relaxational processes have been a much-studied subject miecessarilyT.), again with initial magnetizatiom,. Then
the recent pagtl-19. Especially for a quench from a high- for T,<T., m(t) should grow after the quench, towards the
temperature initial state to the critical region, a new universagquiliprium value selected byng. If in contrast T;>T.,
regime was predicted by Janssen, Schaub, and Schmittmai ) is expected to decay to zero rapidly. Hence, there

[2]. In its most pronounced form this phenomenon, termedy,q g pe a limiting temperatur§ where the qualitative
universal short-time behavigtJSTB) in the following, oc- behavior changes

ZugscégrginmOtgelle:;I[chO]F))urst:}tglrtirﬁla;(recl)trlgnaar: ii)i/tri];llrgltg?g(\j/\(/ai!ch As the initial correlations are short ranged, the natural
T>T. and ?asmall initial.ma net?zatiorm the maanetiza- candidate forT, is the critical temperature of the mean-field
c 9 0 g (MF) theory T¥'F | and with the real ., of spin systems being

tion increases a2] ME - ! )
always smaller thaf; ", it would be an immediate conse-
m(t)~mg t* (1)  quence tham(t) increases for a quench to the critical point.
However, as argued in Rdf13], it is not possible to derive
for a macroscopic time span before it reaches a maximurin€ power law(1) from this scenario. The power-law growth
and eventually decays to the equilibrium value zerds an IS rather a phenomenon that occurs when the time-dependent
independent new exponent determined by the nonequilibigrowing correlation lengthé(t) has becomenacroscopi¢
rium initial state that cannot be expressed in terms of equik.e., much larger than the lattice spaciagcompare Fig. 1
librium exponents. Its value in the two-dimensional Ising below). The derivation of Eq(1) is thus beyond the scope of
system for instance i8§=0.19[6,15]. MF theory.

The results of Janssen, Schaub, and Schmittmars] So far numerical investigations have been mostly carried
allowed the interpretation of earlier Monte CafMC) simu-  out with the heat-battHB) algorithm[22,23. A comparison
lations [4], and later the power lawl) was also directly between the HB and the Metropoli§IE) algorithm[22] was
verified in the “computer experiment[5]. Further it was performed for the Potts model by Okamo al. [8], and it
pointed out by Li, Schike, and Zheng6] that the USTB can  tyrned out that concerning the universal behavior both algo-
be exploited to determinequilibrium exponents from the yithms yield compatible results, but differences occur for
early nonequilibrium regime. In the sequel, this method Wagarly times.
further developed and applied to a number of systEngj. The main purpose of this paper is a more systematic ex-

Moreover, USTB in other dynamic universality clas$és 5 mination of the issue of universality. Are equilibrium expo-

in. systems with a tricritical po.ir[tLO], ‘?”!d in.disordered and nents determined with the USTB really independent of fac-
dilute spin systems, was studigtll]. Finite size effects were tors like the algorithm(HB or ME), the updating scheme

analyzed in Refs12,13, and the USTB near surfaces was (random or sequentigland the lattice typénearest or next-
studied in Ref[14]. Further, the close relationship between ' S€q . yp '
nearest neighbor coupling, square or triangular latti¢éow

USTB and “damage spreading” was pointed oLi5], . s ) )
USTB in a different context, for quasi-long-range orderdoes universal behavior in the regime wgft)>a emerge

evolving after a quench to the Kosterlitz-Thouless phasefTom the nonuniversal early stage wigt) =a? And closely
was investigatefl16], and a general scaling invariance in the '€lated: Is it really a MF ordering process during thero-
short-time regime was founflL7]. Possibly also related to Scopicallyearly stages, or has this simple picture to be re-
USTB is the “overshooting” of the order parameter beyondfined?

the equilibrium domain magnetization for quenches below We answered these questions by solving the master equa-
T. [18], and the issue whether there exist still more indepention for early times(during the first single-spin updaeas

dent exponents for relaxational processes was raised in well as by MC simulation for later times. Our work reveals a
recent reporf19]. number of interesting and surprising details about algorithms
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Without loss of generality one may choose spin 1 to be
updated. From Eq.(2) one straightforwardly derives
Am:=m(t=1/N)—m, to be

Am=2N"1Y [W(——+) P(—,0)
—~W(+——) P(+,0)], 4

where theW's are the probabilities for spin 1 changing sign
with all other spins remaining unchanged. Especially for
smallH (corresponding to smalhg), we find from Eq.(4)

the simple result

1+ EN si), (5

ie |
FIG. 1. Three snapshots of the temporal evolution of a spin
configuration forL =300 andm,=0, generated with the HB algo- where the second sum extends over the interacting neighbors
rithm and random updating. Displayed in each picture is half of thepf spin 1.
system. From the visual appearance there is no difference between From Eq.(5) we calculatedAm and the limiting tempera-
HB and ME algorithm. ture T, for the Ising model on a square lattice with nearest-
N ) neighbor interaction) for HB and ME algorithm. Ind=2
for critical dynamics, and puts the USTB as a method tQqthe system that will be also studied by MC simulations be-
access equilibrium properties from a nonequilibritthrough low) the explicit results are T|HB=3.O8£8 _ and

universal regime on a much firmer basis. TME=1.58&% ... for HB and MEalgorithm, respectively.
(Temperatures are expressed in unitd/df; .) For compari-
Il. SOLUTION OF THE MASTER EQUATION son, the(exac) critical temperature i§.,=2.269 ... and

. : TYF=4. Hence, for the HB algorithnT, is indeed above
Information about thermal averages in the early nonuni- : L . .
while, surprisingly, with ME evemt T, the magnetiza-

versal stage of the relaxational process can be obtained k% ’

. : : - tion decays<1.
lving the m r ion for the Isin m  with . . -
Séc;aub%rtd;nam?ggz] equation for the lsing syste t We calculatedT, also for other dimensions. In the limit

d—o (where the number of nearest neighbors becomes in-

dP(st) finite) one findsT,—TYF for both algorithms considered
. ' :z [W(s'—s) P(s',t)—W(s—5s') P(st)], above. Ford=1 both yieldT,=0.
t s’ From this analysis we conclude: First, the limiting tem-

2 perature in general depends on the algorithm. Only for
d—oo it turns out to beT¥" . Second, we are left with the
puzzling result that for the ME algorithm the limiting tem-
perature lies evemelow T., and therefore one would not
‘expect to see an increase of the magnetizatioR.atin any
event, the simple explanation that the nonuniversal stage pre-
ceding the USTB is a MF ordering process is in general not

wheres denotes a spin configuratiody(s' —¢s) is the tran-
sition probability,P(s,t) the probability to find configuration

s at timet, and the sum extends over all possible configura
tions. The analytic integration of EQR) for large systems of
coupled spins is not feasible. However, for the high-
temperature initial state consisting lfuncorrelated spins in

. . correct.
a magnetic fieldH, characterized by the Boltzmann factor
N Ill. MONTE CARLO SIMULATION
P(s0)=Z,expg H X s with  Zy=(2 cost)N, OF THE NONUNIVERSAL STAGE
i=1
€) In order to learn about later stages; 1, especially the

crossover from microscopic to macroscopic behavior, we

the analytic treatment for very early timesg1, is possible. had to resort to MC simulations. These were carried out for
[The time is expressed in units of MC steps per €i€S).]  an Ising system on a square lattice d=2 with a linear

Consider the first single-spin update after the quench. ItdimensionL and periodically coupled boundaries. Single
takes place in an environment that is coupled to a heat batépins were randomly selected and updated. In order to obtain
at thefinal temperaturel;, andH is switched off. Decisive thermal expectation values we generated a large number of
for the very early stage is whether after thiest update, on histories, each starting from a new initial configuration, and
average, the magnetization is reduced or increased. The realculated mean valug22].
spective tendency survives as long as the system still closely Snapshots of the temporal evolution of a single configu-
resembles the initial state, i.e., as long as the number afation for a square lattice with =90 000 spins are displayed
single-spin updates is much smaller thdn in Fig. 1. The left picture shows the initial state. Next to it
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FIG. 2. Order-parameter profiles far=20 andmy=0.05 ob-

tained with HB (solid line and ME algorithm(dashed ling in FIG. 3. Data collapse of seven magnetization profiles obtained

double-logarithmic representation. The small diagram insertedor L =40 andmy=0.03 for different combinations of lattice types,

shows the data for small times in double-linear representation. ~ algorithms, and updating scheméas described in the texin
double-logarithmic representation. The ME results for the square

the configuration after Bl updates corresponding te=2 is  |attice with sequentialdashed ling and random(dotted ling, as

depicted. At this point the average domain size @with el as for the triangular lattice with sequential updétashed-

thap the correlation length are already substantially largefjotted ling are singled out. The small diagram inserted shows the

than the lattice spacing. This is the stage where universaame data in semilogarithmic representation. The power (3w
(macroscopig behavior emerges from the nonuniver@ai-  with 9=0.19 is plotted for comparison.

croscopig regime as discussed in more detail below. At

;[_= 100 the correlation length is of the order of the lattice SIZ€ o critical point,T,=T,, for various combinations of algo-

Results form(t) at T¢=T. with L=20 andmy=0.05 are rithms, latlice types, and updating schemes. For the square
displayed in Fig. 2. The HBC curvsolid line) monotonously lattice with neare_st-nelg_hbor interactions, we C(_)mbmed_the
increases and is consistent with a power lawtferl.5. In ~ ME and HB algorithm with random and sequential updating
the case of the ME algorithrfdashed ling the behavior is _(four cu.rves, for the triangular Igtuce with nearest-_nelghbo_r
qualitatively different. As expected from our analytic results,interactions we used both algorithms and sequential updating
m(t) indeed drops initially, but has a minimum &0.3, (two curves, and for a square lattice with additional next-
and then increases to assume the power-law forma2.  nearest-neighbor interactions we used the HB algorithm and
Thus, despite the anomalous time dependence of the Mgequential updatingone curve [25].
curve in the nonuniversal regime, for macroscopic times, it As can be seen already from Fig. 2, even though the ini-
agrees with Eqg(1). This is in accord with the findings of tial power law is assumed by both profiles depicted there, the
Okanoet al, where sequential updating was used and, thusheights and locations of the maxima depend on the details of
the details of the temporal evolution were not uncoveredthe method, besides the differences for early times. However,
Later the profiles in Fig. 2 have a maximum and then decayn all cases studied it turned out to be possible to map the
to the equilibrium value zerf24]. data onto a single curve for timés 20, by constant rescal-

Taking into account these results, the natural question thgs of both axes. The result is shown in Fig. 3. On the
ask is whether there exists an algorithm-independent limitingiemilogarithmic plo{small insertion the individual profiles
temperature, a “dynamic MF temperature,” where thac-  cannot be distinguished. When both axes are plotted logarith-
roscopic behavior changes from increasitySTB) to de-  mically, on the other hand, the short-time regime is more

caying. It turns out that for the HB algorithm this limiting ronounced, and significant differences 10 become
value coincides withl}"™; the profiles have mostly one ex- y;siple. The pure power lawsolid line above the dalds
tremum. In order to determine the corresponding limit for y i iad for comparison.

ME, we generated a number of profiles for temperatureS Singled out are the ME curves, for the square lattice with

aboveT., seeking the one that shows a saddle point. W%equential(dashe@d and random(dotted updating, and for

determined the corresponding temperature as EJ0Nei- the tri k : : )
o S ._the triangular lattice with sequential updatifapshed-dotted
ther did this number depend significantly on the system SIZ‘I:’ine). In garticular when theqME algorirt)hm is combined with

nor onm,. However, it does not agree with the correspond—Sequential updating, the power law is assumed only for

; . FHB__
ing value of the HB dynamic¥™~3.1. t=10. This is consistent with the findings of Okaebal.[8]
IV. MONTE CARLO SIMULATION for the Potts model, and can now be interpreted as a conse-
OF THE UNIVERSAL STAGES quence of the anomalous behavior of the ME algorithm for
t=<1. The HB results assume the power-law form much ear-
Eventually we compared magnetization profiles in thelier. Most importantly, however, all seven curves show the
universalregime for a system with =40 andm;=0.03 at USTB as expressed in E{L) for later times,t=10.
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V. SUMMARY independently of the algorithm, the lattice type, and the up-

dating scheme, provided the systems belong to the same dy-

namic universality class and the correlation length has grown
stantially larger than microscopic scales.

We investigated the short-time behavior in relaxational
processes after a temperature quench. As a concrete exam
we studied the Ising system with short-range interactions an
a nonconse_r\_/ed or(_ier paramet&lauber dynamlc)_s We ACKNOWLEDGMENTS
found surprisingly different temporal evolutions with heat-
bath and Metropolis algorithm during early, nonuniversal This work was supported in part by the Deutsche Fors-
stages. Nevertheless, the characteristic short-time power laghungsgemeinschaft through Sonderforschungsbereich 237
(1) turned out to be a rather robust phenomenon, occurringUnordnung und grge Fluktuationen.”
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