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Microscopic nonuniversality versus macroscopic universality in algorithms for critical dynamics

U. Ritschel and P. Czerner
Fachbereich Physik, Universita¨t GH Essen, 45117 Essen, Federal Republic of Germany

~Received 26 July 1996!

We study relaxation processes in spin systems near criticality after a quench from a high-temperature initial
state. Special attention is paid to the stage where universal behavior, with increasing order parameter
m(t);tu, emerges from an early nonuniversal period. We compare various algorithms, lattice types, and
updating schemes and find in each case the same universal behavior atmacroscopictimes, despite surprising
differences during the early nonuniversal stages.@S1063-651X~97!14103-4#

PACS number~s!: 64.60.Ht, 02.70.Lq, 05.50.1q
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I. INTRODUCTION

Temperature quenches in spin systems and the ens
relaxational processes have been a much-studied subje
the recent past@1–19#. Especially for a quench from a high
temperature initial state to the critical region, a new univer
regime was predicted by Janssen, Schaub, and Schmit
@2#. In its most pronounced form this phenomenon, term
universal short-time behavior~USTB! in the following, oc-
curs in a model with purely relaxational dynamics~model
A according to Ref.@20#!. Starting from an initial state with
T@Tc and asmall initial magnetizationm0, the magnetiza-
tion increases as@2#

m~ t !;m0 t
u ~1!

for a macroscopic time span before it reaches a maxim
and eventually decays to the equilibrium value zero.u is an
independent new exponent determined by the nonequ
rium initial state that cannot be expressed in terms of eq
librium exponents. Its value in the two-dimensional Isi
system for instance isu.0.19 @6,15#.

The results of Janssen, Schaub, and Schmittmann@2,3#
allowed the interpretation of earlier Monte Carlo~MC! simu-
lations @4#, and later the power law~1! was also directly
verified in the ‘‘computer experiment’’@5#. Further it was
pointed out by Li, Schu¨lke, and Zheng@6# that the USTB can
be exploited to determineequilibrium exponents from the
early nonequilibrium regime. In the sequel, this method w
further developed and applied to a number of systems@7,8#.
Moreover, USTB in other dynamic universality classes@9#,
in systems with a tricritical point@10#, and in disordered and
dilute spin systems, was studied@11#. Finite size effects were
analyzed in Refs.@12,13#, and the USTB near surfaces wa
studied in Ref.@14#. Further, the close relationship betwe
USTB and ‘‘damage spreading’’ was pointed out@15#,
USTB in a different context, for quasi-long-range ord
evolving after a quench to the Kosterlitz-Thouless pha
was investigated@16#, and a general scaling invariance in th
short-time regime was found@17#. Possibly also related to
USTB is the ‘‘overshooting’’ of the order parameter beyo
the equilibrium domain magnetization for quenches bel
Tc @18#, and the issue whether there exist still more indep
dent exponents for relaxational processes was raised
recent report@19#.
551063-651X/97/55~4!/3958~4!/$10.00
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A simple physical argument for the growth of the magn
tization in Eq.~1! was given by Janssen@3,21#. Consider a
system that is quenched to some final temperatureTf ~not
necessarilyTc), again with initial magnetizationm0. Then
for Tf!Tc , m(t) should grow after the quench, towards th
equilibrium value selected bym0. If in contrast Tf@Tc ,
m(t) is expected to decay to zero rapidly. Hence, th
should be a limiting temperatureTl where the qualitative
behavior changes.

As the initial correlations are short ranged, the natu
candidate forTl is the critical temperature of the mean-fie
~MF! theoryTc

MF , and with the realTc of spin systems being
always smaller thanTc

MF , it would be an immediate conse
quence thatm(t) increases for a quench to the critical poin
However, as argued in Ref.@13#, it is not possible to derive
the power law~1! from this scenario. The power-law growt
is rather a phenomenon that occurs when the time-depen
~growing! correlation lengthj(t) has becomemacroscopic,
i.e., much larger than the lattice spacinga ~compare Fig. 1
below!. The derivation of Eq.~1! is thus beyond the scope o
MF theory.

So far numerical investigations have been mostly carr
out with the heat-bath~HB! algorithm@22,23#. A comparison
between the HB and the Metropolis~ME! algorithm@22# was
performed for the Potts model by Okanoet al. @8#, and it
turned out that concerning the universal behavior both al
rithms yield compatible results, but differences occur
early times.

The main purpose of this paper is a more systematic
amination of the issue of universality. Are equilibrium exp
nents determined with the USTB really independent of f
tors like the algorithm~HB or ME!, the updating scheme
~random or sequential!, and the lattice type~nearest or next-
nearest neighbor coupling, square or triangular lattice!? How
does universal behavior in the regime withj(t)@a emerge
from the nonuniversal early stage withj(t).a? And closely
related: Is it really a MF ordering process during themicro-
scopicallyearly stages, or has this simple picture to be
fined?

We answered these questions by solving the master e
tion for early times~during the first single-spin updates! as
well as by MC simulation for later times. Our work reveals
number of interesting and surprising details about algorith
3958 © 1997 The American Physical Society
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for critical dynamics, and puts the USTB as a method
access equilibrium properties from a nonequilibrium~though
universal! regime on a much firmer basis.

II. SOLUTION OF THE MASTER EQUATION

Information about thermal averages in the early nonu
versal stage of the relaxational process can be obtained
solving the master equation for the Ising system wi
Glauber dynamics@22#

dP~s,t !

dt
5(

s8
@W~s8→s! P~s8,t !2W~s→s8! P~s,t !#,

~2!

wheres denotes a spin configuration,W(s8→s) is the tran-
sition probability,P(s,t) the probability to find configuration
s at time t, and the sum extends over all possible configur
tions. The analytic integration of Eq.~2! for large systems of
coupled spins is not feasible. However, for the hig
temperature initial state consisting ofN uncorrelated spins in
a magnetic fieldH, characterized by the Boltzmann factor

P~s,0!5Z0
21expSH (

i51

N

si D with Z05~2 coshH !N,

~3!

the analytic treatment for very early times,t!1, is possible.
@The time is expressed in units of MC steps per site~MCS!.#

Consider the first single-spin update after the quench
takes place in an environment that is coupled to a heat b
at thefinal temperatureTf , andH is switched off. Decisive
for the very early stage is whether after thefirst update, on
average, the magnetization is reduced or increased. The
spective tendency survives as long as the system still clos
resembles the initial state, i.e., as long as the number
single-spin updates is much smaller thanN.

FIG. 1. Three snapshots of the temporal evolution of a sp
configuration forL5300 andm050, generated with the HB algo-
rithm and random updating. Displayed in each picture is half of t
system. From the visual appearance there is no difference betw
HB and ME algorithm.
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Without loss of generality one may choose spin 1 to
updated. From Eq.~2! one straightforwardly derives
Dm:5m(t51/N)2m0 to be

Dm52N21(
s

@W~2→1 ! P~2,0!

2W~1→2 ! P~1,0!#, ~4!

where theW’s are the probabilities for spin 1 changing sig
with all other spins remaining unchanged. Especially
smallH ~corresponding to smallm0), we find from Eq.~4!
the simple result

Dm524H N21(
s
W~1→2 !S 11 (

iP IN
si D , ~5!

where the second sum extends over the interacting neigh
of spin 1.

From Eq.~5! we calculatedDm and the limiting tempera-
tureTl for the Ising model on a square lattice with neare
neighbor interactionJ for HB and ME algorithm. Ind52
~the system that will be also studied by MC simulations b
low! the explicit results are Tl

HB53.0898 . . . and
Tl
ME51.5885 . . . for HB and MEalgorithm, respectively.

~Temperatures are expressed in units ofJ/kB .) For compari-
son, the~exact! critical temperature isTc52.2691 . . . and
Tc
MF54. Hence, for the HB algorithmTl is indeed above

Tc , while, surprisingly, with ME evenat Tc the magnetiza-
tion decayst!1.

We calculatedTl also for other dimensions. In the limi
d→` ~where the number of nearest neighbors becomes
finite! one findsTl→Tc

MF for both algorithms considered
above. Ford51 both yieldTl50.

From this analysis we conclude: First, the limiting tem
perature in general depends on the algorithm. Only
d→` it turns out to beTc

MF . Second, we are left with the
puzzling result that for the ME algorithm the limiting tem
perature lies evenbelow Tc , and therefore one would no
expect to see an increase of the magnetization atTc . In any
event, the simple explanation that the nonuniversal stage
ceding the USTB is a MF ordering process is in general
correct.

III. MONTE CARLO SIMULATION
OF THE NONUNIVERSAL STAGE

In order to learn about later stages,t*1, especially the
crossover from microscopic to macroscopic behavior,
had to resort to MC simulations. These were carried out
an Ising system on a square lattice ind52 with a linear
dimensionL and periodically coupled boundaries. Sing
spins were randomly selected and updated. In order to ob
thermal expectation values we generated a large numbe
histories, each starting from a new initial configuration, a
calculated mean values@22#.

Snapshots of the temporal evolution of a single config
ration for a square lattice withN590 000 spins are displaye
in Fig. 1. The left picture shows the initial state. Next to
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the configuration after 2N updates corresponding tot52 is
depicted. At this point the average domain size and~with
that! the correlation length are already substantially lar
than the lattice spacing. This is the stage where unive
~macroscopic! behavior emerges from the nonuniversal~mi-
croscopic! regime as discussed in more detail below.
t5100 the correlation length is of the order of the lattice s
L.

Results form(t) at Tf5Tc with L520 andm050.05 are
displayed in Fig. 2. The HB curve~solid line! monotonously
increases and is consistent with a power law fort*1.5. In
the case of the ME algorithm~dashed line! the behavior is
qualitatively different. As expected from our analytic resul
m(t) indeed drops initially, but has a minimum att.0.3,
and then increases to assume the power-law form fort*2.
Thus, despite the anomalous time dependence of the
curve in the nonuniversal regime, for macroscopic times
agrees with Eq.~1!. This is in accord with the findings o
Okanoet al., where sequential updating was used and, th
the details of the temporal evolution were not uncover
Later the profiles in Fig. 2 have a maximum and then de
to the equilibrium value zero@24#.

Taking into account these results, the natural questio
ask is whether there exists an algorithm-independent limi
temperature, a ‘‘dynamic MF temperature,’’ where themac-
roscopicbehavior changes from increasing~USTB! to de-
caying. It turns out that for the HB algorithm this limitin
value coincides withTl

HB ; the profiles have mostly one ex
tremum. In order to determine the corresponding limit
ME, we generated a number of profiles for temperatu
aboveTc , seeking the one that shows a saddle point.
determined the corresponding temperature as 2.70(2). Nei-
ther did this number depend significantly on the system s
nor onm0. However, it does not agree with the correspon
ing value of the HB dynamicsTl

HB.3.1.

IV. MONTE CARLO SIMULATION
OF THE UNIVERSAL STAGES

Eventually we compared magnetization profiles in t
universalregime for a system withL540 andm050.03 at

FIG. 2. Order-parameter profiles forL520 andm050.05 ob-
tained with HB ~solid line! and ME algorithm~dashed line! in
double-logarithmic representation. The small diagram inse
shows the data for small times in double-linear representation.
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the critical point,Tf5Tc , for various combinations of algo-
rithms, lattice types, and updating schemes. For the squa
lattice with nearest-neighbor interactions, we combined th
ME and HB algorithm with random and sequential updating
~four curves!, for the triangular lattice with nearest-neighbor
interactions we used both algorithms and sequential updatin
~two curves!, and for a square lattice with additional next-
nearest-neighbor interactions we used the HB algorithm an
sequential updating~one curve! @25#.

As can be seen already from Fig. 2, even though the in
tial power law is assumed by both profiles depicted there, th
heights and locations of the maxima depend on the details
the method, besides the differences for early times. Howeve
in all cases studied it turned out to be possible to map th
data onto a single curve for timest*20, by constant rescal-
ings of both axes. The result is shown in Fig. 3. On the
semilogarithmic plot~small insertion! the individual profiles
cannot be distinguished. When both axes are plotted logarit
mically, on the other hand, the short-time regime is mor
pronounced, and significant differences fort&10 become
visible. The pure power law~solid line above the data! is
plotted for comparison.

Singled out are the ME curves, for the square lattice wit
sequential~dashed! and random~dotted! updating, and for
the triangular lattice with sequential updating~dashed-dotted
line!. In particular, when the ME algorithm is combined with
sequential updating, the power law is assumed only fo
t*10. This is consistent with the findings of Okanoet al. @8#
for the Potts model, and can now be interpreted as a cons
quence of the anomalous behavior of the ME algorithm fo
t&1. The HB results assume the power-law form much ea
lier. Most importantly, however, all seven curves show the
USTB as expressed in Eq.~1! for later times,t*10.

d
FIG. 3. Data collapse of seven magnetization profiles obtaine

for L540 andm050.03 for different combinations of lattice types,
algorithms, and updating schemes~as described in the text! in
double-logarithmic representation. The ME results for the squar
lattice with sequential~dashed line! and random~dotted line!, as
well as for the triangular lattice with sequential update~dashed-
dotted line! are singled out. The small diagram inserted shows th
same data in semilogarithmic representation. The power law~1!
with u50.19 is plotted for comparison.
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V. SUMMARY

We investigated the short-time behavior in relaxatio
processes after a temperature quench. As a concrete exa
we studied the Ising system with short-range interactions
a nonconserved order parameter~Glauber dynamics!. We
found surprisingly different temporal evolutions with hea
bath and Metropolis algorithm during early, nonunivers
stages. Nevertheless, the characteristic short-time power
~1! turned out to be a rather robust phenomenon, occur
re
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l
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d

l
w
g

independently of the algorithm, the lattice type, and the
dating scheme, provided the systems belong to the same
namic universality class and the correlation length has gro
substantially larger than microscopic scales.
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